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The edge version of geometric arithmetic index of graph 𝐺, abbreviated as 𝐺𝐴𝑒(𝐺),  is defined as 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺) , where 𝑑𝐿(𝐺)(𝑒) denotes the degrees of an edge 𝑒 of line graph of G. In this paper, the 

closed formulas for 𝐺𝐴𝑒 index for some nanotubes and nanotorus are given. 
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1. Introduction 
 

A single number that can be used to characterize some 

property of the graph of a molecule is called a topological 

index for that graph. There are numerous topological 

descriptors that have found some applications in 

theoretical chemistry, especially in QSPR/QSAR research 

[16]. The oldest topological index which introduced by 

Harold Wiener in 1947 is ordinary (vertex) version of 

Wiener index [18] which is the sum of all distances 

between vertices of a graph. Also, the edge version of 

Wiener index which were based on distance between 

edges introduced by Iranmanesh et al. in 2008 [10]. 

 

One of the most important topological indices is the 

well-known branching index introduced by Randic [15] 

which is defined as the sum of certain bond contributions 

calculated from the vertex degree of the hydrogen 

suppressed molecular graphs.  

 

Motivated by the definition of Randic connectivity 

index based on the end-vertex degrees of edges in a 

connected graph G with the vertex set V (G) and the edge 

set E (G) [9,11]. Vukicevic and Furtula [17] proposed a 

topological index named the geometric-arithmetic index 

(simply GA) as 

 

𝐺𝐴(𝐺) = ∑
2√𝑑𝐺(𝑢)𝑑𝐺(𝑣)

𝑑𝐺(𝑢)+𝑑𝐺(𝑣)𝑢𝑣∈𝐸(𝐺)
 

 

where  𝑑𝐺(𝑢) denotes the degree of the vertex 𝑢 in 𝐺. The 

reader can find more information about geometric-

arithmetic index in [7,17,20]. 

In [12], the edge version of geometric-arithmetic 

index was introduced based on the end-vertex degrees of 

edges in a line graph of 𝐺 which is a graph such that each 

vertex of 𝐿(𝐺) represents an edge of 𝐺; and two vertices 

of 𝐿(𝐺) are adjacent if and only if their corresponding 

edges share a common endpoint in 𝐺, as follows 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒) +  𝑑𝐿(𝐺)(𝑓)
𝑒𝑓∈𝐸(𝐿(𝐺)

 

 
where 𝑑𝐿(𝐺)(𝑒) denotes the degree of the edge 𝑒 in 𝐺. The 

edge version of GA index of benzenoid graph was studied 

by Farahaini [6]. The total version of GA index was 

considered in [13,14]. 

Carbon nanotubes form an interesting class of carbon 

nanomaterials. There are three types of nanotubes: 

armchair, chiral and zigzag structures. Carbon nanotubes 

show remarkable mechanical properties. Experimental 

studies have shown that they belong to the stiffest and 

elastic known materials. Diudea was the first chemist who 

considered the problem of computing topological indices 

of nanostructures (see for examples [2-5]). In this paper, 

we continue this program and compute the edge version of 

𝐺𝐴 index for some families of nanotubes and nanotours. 

 

 

 

 



The edge version of geometric arithmetic index of nanotubes and nanotori                                    1293 

 

 
 

2. Results and discussion 
 

In this section, we first give the edge version of GA 

index of some standard graphs. 

 

Example 1.  Let 𝑃𝑛 be a path with n vertices. Then, 

the edge version of geometric arithmetic index of 𝑃𝑛 is 

 

𝐺𝐴𝑒(𝑃𝑛) = 𝐺𝐴(𝑃𝑛−1) =  
4√2

3
+ (𝑛 − 4). 

 
Example 2.  Let 𝑆𝑛 be a  star graph with 𝑛 vertices. 

Then, the edge version of geometric arithmetic index of 𝑆𝑛 

is  

𝐺𝐴𝑒(𝑆𝑛) = (
𝑛 − 1

2
). 

Example 3.  Let 𝐾𝑛 be a complete graph with 𝑛 

vertices. Then, the edge version of geometric arithmetic 

index of complete graph, 𝐾𝑛 is 

 

𝐺𝐴𝑒(𝐾𝑛) = 𝐺𝐴((2𝑛 − 1) − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑔𝑟𝑎𝑝ℎ)

=
𝑛(𝑛 − 1)2

2
  . 

 
Example 4.  Let 𝐶𝑛 be a cycle with 𝑛 vertices. Then, 

the edge version of geometric arithmetic index of 𝐶𝑛 is 

𝐺𝐴𝑒(𝐶𝑛) = 𝐺𝐴(𝐶𝑛) = 𝑛. 
 

Example 5.  Consider the wheel graph 𝑊4 as depicted 

in Figure 1. The line graph of 𝑊4, 𝐿(𝑤4) has 12 edges. 

Then, there are 12 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

Thus, we have 𝐺𝐴𝑒(𝑊4) = 12. 
 

 

            
                                                           𝑊4 

            𝐿(𝑊4) 

 

Fig. 1. Graphs  𝑊4 and  𝐿(𝑊4) 

 

 

Example 6.  Consider the wheel graph 𝑊5 as depicted 

in Fig. 2. The line of 𝑊5, 𝐿(𝑊5) has 18 edges. Then, there 

are 4 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4, 8 edges with 

type of 𝑑𝐿(𝐺)(𝑒) = 4, 𝑑𝐿(𝐺)(𝑓) = 5 and 6 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 5. Thus we have 

 

 

𝐺𝐴𝑒(𝑊5) = 4 (1 +
8√5

9
+

3

2
) 

 

                     
         𝑊5                           𝐿(𝑊5) 

 

Fig. 2. Graphs  𝑊5 and  𝐿(𝑊5) 

               

 
Lemma 1.  Let 𝑊𝑛 be the wheel graph with 𝑛 

vertices. Then, the edge version of geometric arithmetic 

index of 𝑊𝑛 is 

 

𝐺𝐴𝑒(𝑊𝑛) = (𝑛 − 1) (1 +
8√𝑛

4 + 𝑛
+

𝑛 − 2

2
) 

                
Proof. By continuing an induction argument on n, one 

can check that in general, the line graph of 𝑊𝑛 has 

3(𝑛 − 1) + |𝐾𝑛−1| edges. On the hand, there are 𝑛 − 1 

edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4, 2(𝑛 − 1) edges of 

type 𝑑𝐿(𝐺)(𝑒) = 4, 𝑑𝐿(𝐺)(𝑓) = 𝑛,  |𝐾𝑛−1| edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 𝑛.  Since 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒) +  𝑑𝐿(𝐺)(𝑓)
𝑒𝑓∈𝐸(𝐿(𝐺)

 

 

this implies 

 

𝐺𝐴𝑒(𝑊𝑛) = (𝑛 − 1) (
2√4 × 4

4 + 4
) + 2(𝑛 − 1) (

2√4 × 𝑛

4 + 𝑛
)

+
(𝑛 − 1)(𝑛 − 2)

2
(

2√𝑛 × 𝑛

𝑛 + 𝑛
). 

 

After an easy simplification, we obtain 

 

𝐺𝐴𝑒(𝑊𝑛) = (𝑛 − 1) (1 +
8√𝑛

4 + 𝑛
+

𝑛 − 2

2
). 

 
Now the proof is complete. 

 

 

2.1 Edge Version of GA Index of  

       𝑻𝑼𝑪𝟒𝑪𝟔𝑪𝟖[𝒑, 𝒒] nanotube 

 

We now compute the edge version of GA index for 

𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotube, with q rows and p column. 

Firstly, we consider the following examples. 

Example 7.  Consider the graph of 2-dimensional 

lattice of 𝑇𝑈𝐶4𝐶6𝐶8[1,1] nanotube as depicted in Fig. 4. 

The line graph of 𝑇𝑈𝐶4𝐶6𝐶8[1,1] has 14 edges. If 𝑑𝐿(𝐺)(𝑒) 
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and 𝑑𝐿(𝐺)(𝑓) be the degree of edge of 𝑒, then there are 2 

edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 8 edges of type 

𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 4 edges with 𝑑𝐿(𝐺)(𝑒) =

𝑑𝐿(𝐺)(𝑓) = 4. Thus we have 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[1,1]) = 18 + 4 (
8√3

7
− 3) 

 

   
𝑇𝑈𝐶4𝐶6𝐶8[1,1] 

 
𝐿(𝑇𝑈𝐶4𝐶6𝐶8[1,1]) 

 

Fig. 4. Graph of 2-dimensional lattice of nanotube 

𝑇𝑈𝐶4𝐶6𝐶8[1,1] and  𝐿(𝑇𝑈𝐶4𝐶6𝐶8[1,1]) 

 

Example 8.  Consider the graph of 2-dimensional 

lattice of 𝑇𝑈𝐶4𝐶6𝐶8[2,2] nanotube as depicted in Fig. 5. 

The line graph of 𝑇𝑈𝐶4𝐶6𝐶8[2,2] has 64 edges. Also, 

there are 4 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 16 edges 

of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 44 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus, we have 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[2,2]) = 72 + 8 (
8√3

7
− 3) 

 

   
 𝑇𝑈𝐶4𝐶6𝐶8[2,2]    

 

 
𝐿(𝑇𝑈𝐶4𝐶6𝐶8[2,2]). 

 
Fig. 5. Graph 2-dimensional lattice of 𝑇𝑈𝐶4𝐶6𝐶8[2,2] 

nanotube and 𝐿(𝑇𝑈𝐶4𝐶6𝐶8[2,2]) 

Example 9.  Consider the graph of2-dimensional 

lattice of 𝑇𝑈𝐶4𝐶6𝐶8[4,5] nanotube as depicted in Fig. 6. 

The line graph of 𝑇𝑈𝐶4𝐶6𝐶8[4,5] has 344 edges. Also, 

there are 8 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 32 edges 

of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 304 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. In other words, 

 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[4,5]) = 360 + 16 (
8√3

7
− 3) 

 

 
 

Fig. 6. Graph of 2-dimensional lattice of 

𝑇𝑈𝐶4𝐶6𝐶8[4,5] nanotube 

 

 

By continuing this method, one can check  that in 

general, the line graph of  𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotube has 

18𝑝𝑞 − 4𝑝 edges. On the hand, there are 2𝑝 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 8𝑝 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4,  18𝑝𝑞 − 14𝑝 edges with 𝑑𝐿(𝐺)(𝑒) =

𝑑𝐿(𝐺)(𝑓) = 4.  

Now, we can deduce the following result. 

 

Theorem 2.  Consider the graph of 

𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotube. Then, the 𝐺𝐴𝑒 of 

𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotube is given as 

 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞]) = 18𝑝𝑞 + 4𝑝 (
8√3

7
− 3). 

 

Proof. Let G be the graph of 𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] 
nanotube. Since 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺)  , 

 

this implies that 
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𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞)

= 2𝑝 (
2√3 × 3

6
) + 8𝑝 (

2√3 × 4

7
)

+ (18𝑝𝑞 − 14𝑝) (
2√4 × 4

8
). 

 
After an easy simplification, we obtain 

 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞) = 18𝑝𝑞 + 4𝑝 (
8√3

7
− 3). 

Now the proof is complete.  

 

 

2.2 Edge Version of GA Index of  

       𝑻𝑼𝑺𝑪𝟒𝑪𝟖(𝑺)[𝒎, 𝒏]   nanotube 

 

We now compute the edge version of GA index for 

𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] nanotube, with n rows and m column. 

Firstly, we consider the following examples. 

 

Example 10.  Consider the graph of 2-dimensional 

lattice of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1] nanotube as depicted in Figure 

7. The line graph of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1]  has 28 edges. Also, 

there are 4 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 8 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4  and 16 edges 

with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus, we obtain 

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1])

= 24 + 8 (
√6

5
+

4√3

7
− 1) 

 

 
𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1]  

 
𝐿(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1]) 

 
Fig. 7. Graph of 2-dimensional lattice of 

𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1] nanotube and 𝐿(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,1]) 

 

Example 11.  Consider the graph of 2-dimensional 

lattice of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[2,1] nanotube as depicted in Fig. 8.  

The line graph of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[2,1]  has 56 edges. Also, 

there are 8 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 16 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4 and 32 edges 

with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus, we have 

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[2,1])

= 48 + 16 (
√6

5
+

4√3

7
− 1) 

 

 
Fig. 8. Graph of 2-dimensional lattice of 

𝑇𝑈𝑆𝐶4𝐶8(𝑆)[2,1] nanotube 

 

Example 12.  Consider the graph of 2-dimensional 

lattice of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,2] nanotube as depicted in Fig. 9.  

The line graph of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,2] has 52 edges. Also, 

there are 4 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 8 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4  and 40 edges 

with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus, we have 

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,2])

= 48 + 8 (
√6

5
+

4√3

7
− 1) 

 

 
Fig. 9. Graph of 2-dimensional lattice of 

𝑇𝑈𝑆𝐶4𝐶8(𝑆)[1,2] nanotube 

 

Similarly, by continuing the above method in general, 

the line graph of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛]  has 24𝑚𝑛 + 4𝑚 

edges On the hand, there are 4𝑚 edges of type𝑑𝐿(𝐺)(𝑒) =

2, 𝑑𝐿(𝐺)(𝑓) = 3, 8𝑚 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4  and  24𝑚𝑛 − 8𝑚 edges with 𝑑𝐿(𝐺)(𝑒) =

𝑑𝐿(𝐺)(𝑓) = 4.   

 

Thus, the following result can be obtained. 
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Theorem 3.  Consider the graph of 

𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] nanotube as shown in Fig. 10. Then, 

the 𝐺𝐴𝑒 of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛]   nanotube is given as  

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛])

= 24𝑚𝑛 + 8𝑚 (
√6

5
+

4√3

7
− 1) 

 

 
 

Fig. 10. Graph of 2-dimensional lattice 

 of 𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] nanotube 

 

Proof.  Let G be the graph of  𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] 
nanotube. Since 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺)  , 

 

this implies that 

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] )

= 4𝑚 (
2√2 × 3

5
) + 8𝑚 (

2√3 × 4

7
)

+ (24𝑚𝑛 − 8𝑚) (
2√4 × 4

8
). 

After an easy simplification, we obtain 

 

𝐺𝐴𝑒(𝑇𝑈𝑆𝐶4𝐶8(𝑆)[𝑚, 𝑛] )

= 24𝑚𝑛 + 8𝑚 (
√6

5
+

4√3

7
− 1) 

Now the proof is complete.  

 

 

2.3 Edge Version of GA Index of H-Naphtalenic  

      𝑵𝑷𝑯𝑿[𝒎, 𝒏] nanotube 

 

We now compute the edge version of GA index for H-

Naphtalenic 𝑁𝑃𝐻𝑋[𝑚, 𝑛] nanotube. Firstly, we consider 

the following examples. 

Example 13.  Consider the graph of 2-dimensional 

lattice of H-Naphtalenic 𝑁𝑃𝐻𝑋[1,1] nanotube as depicted 

in Fig. 11. The line graph of 𝑁𝑃𝐻𝑋[1,1] has 22 edges. 

Also, there are 6 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 12 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 4 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus,  

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[1,1]) = 30 + 4 (
12√2

3
− 5) 

 

  
𝑁𝑃𝐻𝑋[1,1] 

 

 
𝐿(𝑁𝑃𝐻𝑋[1,1]) 

 
Fig. 11. Graph of 2-dimensional lattice of H-Naphtalenic 

 𝑁𝑃𝐻𝑋[1,1] nanotube and 𝐿(𝑁𝑃𝐻𝑋[1,1]) 

 

Example 14.  Consider the graph of 2-dimensional 

lattice of H-Naphtalenic 𝑁𝑃𝐻𝑋[2,2] nanotube as depicted 

in Figure 12. The line graph of 𝑁𝑃𝐻𝑋[2,2] has 104 edges. 

Also, there are 12 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 24 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 68 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus,  

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[2,2]) = 120 + 8 (
12√2

3
− 5) 

 

 
 

Fig. 12. Graph of 2-dimensional lattice of  

H-Naphtalenic 𝑁𝑃𝐻𝑋[2,2] nanotube 

   

 

Example 15.  Consider the graph of 2-dimensional 

lattice of H-Naphtalenic 𝑁𝑃𝐻𝑋[4,3] nanotube as depicted 

in Fig. 13. The line graph of 𝑁𝑃𝐻𝑋[4,3] has 328 edges. 

Also, there are 24 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 48 

edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 256 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. Thus,  

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[4,3]) = 360 + 16 (
12√2

3
− 5) 
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Fig. 13. Graph of 2-dimensional lattice of H-Naphtalenic 

 𝑁𝑃𝐻𝑋[4,3] nanotube 

 

Similarly, by continuing the above method in general, 

the line graph of 𝑁𝑃𝐻𝑋[𝑚, 𝑛] has 30𝑚𝑛 − 8𝑚 edges. On 

the hand, there are 6𝑚 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) =

3, 12𝑚 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 

30𝑚𝑛 − 26𝑛  edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4.    

 

The following result can be easily obtained. 

 

Theorem 4.  Consider the graph of 𝑁𝑃𝐻𝑋[𝑚, 𝑛] 
nanotube. Then, the 𝐺𝐴𝑒 of 𝑁𝑃𝐻𝑋[𝑚, 𝑛] nanotube is 

 

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[𝑚, 𝑛]) = 30𝑚𝑛 + 4𝑚 (
12√2

3
− 5) 

 

Proof.  Let G be the graph of  𝑁𝑃𝐻𝑋[𝑚, 𝑛] nanotube. 

Since 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺)  , 

 

this implies that 

 

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[𝑚, 𝑛] )

= 6𝑚 (
2√3 × 3

6
)

+ 12𝑚 (
2√3 × 4

7
)

+ (30𝑚𝑛 − 26𝑚) (
2√4 × 4

8
). 

 

After an easy simplification, we obtain 

 

𝐺𝐴𝑒(𝑁𝑃𝐻𝑋[𝑚, 𝑛] ) = 30𝑚𝑛 + 4𝑚 (
12√2

3
− 5) 

Now the proof is complete.  

 

 

2.4 Edge Version of GA Index  

       of  𝑪𝟒𝑪𝟔𝑪𝟖[𝒑, 𝒒] nanotori 

 

We now compute the edge version of GA index for 

𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotori. Firstly, we consider the following 

examples. 

Example 16.   Consider the graph of 2-dimensional 

lattice of 𝐶4𝐶6𝐶8[2,1] nanotori as depicted in Figure 14.  

The line graph of 𝐶4𝐶6𝐶8[2,1] has 32 edges. Also, there 

are 4 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4,  2 edges 

with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 8 edges of type 𝑑𝐿(𝐺)(𝑒) =

3, 𝑑𝐿(𝐺)(𝑓) = 4, 18 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

Thus 

 

𝐺𝐴𝑒(𝐶4𝐶6𝐶8[2,1]) = 36 + 8 (
√2

3
+

4√3

7
− 2). 

 

  
𝐶4𝐶6𝐶8[2,1] 

 
𝐿(𝐶4𝐶6𝐶8[2,1]) 

 
Fig. 14. Graph of 2-dimensional lattice of  

 𝐶4𝐶6𝐶8[2,1] nanotori and 𝐿(𝐶4𝐶6𝐶8[2,1]) 

 

 

Example 17.  Consider the graph of 2-dimensional 

lattice of 𝐶4𝐶6𝐶8[3,2] nanotori as depicted in Fig. 15. The 

line graph of 𝐶4𝐶6𝐶8[3,2] has 102 edges. Also, there are 6 

edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4,  3 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 12 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4, 81 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

Thus, 

 

𝐺𝐴𝑒(𝐶4𝐶6𝐶8[3,2]) = 108 + 12 (
√2

3
+

4√3

7
− 2) 
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Fig. 15. 2-dimensional lattice of 𝐶4𝐶6𝐶8[3,2] nanotori 

 

 

Example 18.  Consider the graph of 2-dimensional 

lattice of 𝐶4𝐶6𝐶8[4,4] nanotori as depicted in Fig. 16. The 

line graph of 𝐶4𝐶6𝐶8[4,4] has 280 edges. Also, there are 8 

edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4,  4 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 16 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4, 252 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

Thus, 

 

𝐺𝐴𝑒(𝐶4𝐶6𝐶8[4,4]) = 288 + 16 (
√2

3
+

4√3

7
− 2) 

 
 

Fig. 16. Graph of 2-dimensional lattice 

 of 𝐶4𝐶6𝐶8[4,4] nanotori 

 

 

Similarly, by continuing the above method in general, 

this line graph has 18𝑝𝑞 − 2𝑝 edges. On the hand, there 

are 2𝑝 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4,  𝑝 edges 

with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 3, 4𝑝 edges of type 

𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4,  18𝑝𝑞 − 9𝑝 edges with 

𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4.  

 

We can now deduce the following result. 

 

Theorem 5.  Consider the graph of 

𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotori. Then the 𝐺𝐴𝑒 of 𝐶4𝐶6𝐶8[𝑝, 𝑞] 
nanotube is given as 

 

𝐺𝐴𝑒(𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞])

= 18𝑝𝑞 + 4𝑝 (
√2

3
+

4√3

7
− 2) 

 

Proof.  Let G be the graph of 𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotori. 

Since 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺)  , 

 

this implies that 

𝐺𝐴𝑒(𝐶4𝐶6𝐶8[𝑝, 𝑞])

= 2𝑝 (
2√2 × 4

6
) + 𝑝 (

2√3 × 3

6
)

+ 4𝑝 (
2√3 × 4

7
)

+ (18𝑝𝑞 − 9𝑝) (
2√4 × 4

8
) 

After an easy simplification, we obtain 

 

𝐺𝐴𝑒(𝐶4𝐶6𝐶8[𝑝, 𝑞])

= 18𝑝𝑞 + 4𝑝 (
√2

3
+

4√3

7
− 2) 

 
Now the proof is complete.  

 

 

2.5 Edge Version of GA Index  

       of  𝑻𝑪𝟒𝑪𝟖(𝑺) [𝒑, 𝒒]  nanotori 

 

We now compute the edge version of GA index for 

𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞] nanotori. Firstly, we consider the 

following examples. 

Example 19.  Consider the graph of 2-dimensional 

lattice of 𝑇𝐶4𝐶8(𝑆) [1,1] nanotori as depicted in Figure 

17. The line graph of 𝑇𝐶4𝐶8(𝑆) [1,1]  has 20 edges. Also, 

there are 2 edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 4 

edges of type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4, 4 edges of type 

𝑑𝐿(𝐺)(𝑒) = 3, 𝑑𝐿(𝐺)(𝑓) = 4, 10 edges with 𝑑𝐿(𝐺)(𝑒) =

𝑑𝐿(𝐺)(𝑓) = 4. Thus,  

 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [1,1]) = 24 + 4 (
√6

5
+

2√3

3
+ 

4√3

7
−

14

4
)  

            
𝑇𝐶4𝐶8(𝑆) [1,1]                𝐿(𝑇𝐶4𝐶8(𝑆) [1,1]) 

 

Fig. 17. Graph of 2-dimensional lattice of 

𝑇𝐶4𝐶8(𝑆) [1,1] nanotori and 𝐿(𝑇𝐶4𝐶8(𝑆) [1,1]) 
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Example 20.  Consider the graph of 2-dimensional 

lattice of 𝑇𝐶4𝐶8(𝑆) [2,2] nanotori as depicted in Fig. 18. 

This line graph has 88 edges.  Also, there are 4 edges of 

type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 8 edges of type 

𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4, 8 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4, 68 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

Thus,  

 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [2,2])

= 96 + 8 (
√6

5
+

2√3

3
+

4√3

7
−

14

4
) 

 

 
 

Fig. 18. 2-dimensional lattice of 𝑇𝐶4𝐶8(𝑆) [2,2] nanotori 

 

 

Example 21.  Consider the graph of 2-dimensional 

lattice of 𝑇𝐶4𝐶8(𝑆) [5,3] nanotori as depited in Fig. 19. 

This line graph has 340 edges.  Also, there are 10 edges of 

type 𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 20 edges of type 

𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 4, 20 edges of type 𝑑𝐿(𝐺)(𝑒) =

3, 𝑑𝐿(𝐺)(𝑓) = 4, 290 edges with 𝑑𝐿(𝐺)(𝑒) = 𝑑𝐿(𝐺)(𝑓) = 4. 

In other words, 

 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [5,3])

= 360

+ 20 (
√6

5
+

2√3

3
+

4√3

7
−

14

4
) 

 

 
Fig. 19. 2-dimensional lattice of  𝑇𝐶4𝐶8(𝑆) [5,3] nanotori 

 

 

By continuing this method, one can see that in 

generally, the line graph of 𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞]  has 24𝑝𝑞 −
4𝑝 edges. On the hand there are 2𝑝 edges of type 

𝑑𝐿(𝐺)(𝑒) = 2, 𝑑𝐿(𝐺)(𝑓) = 3, 4𝑝 edges of type 𝑑𝐿(𝐺)(𝑒) =

2, 𝑑𝐿(𝐺)(𝑓) = 4, 4𝑝 edges of type 𝑑𝐿(𝐺)(𝑒) = 3, 

𝑑𝐿(𝐺)(𝑓) = 4, 24𝑝𝑞 − 14𝑝  edges with 𝑑𝐿(𝐺)(𝑒) =

𝑑𝐿(𝐺)(𝑓) = 4.  

 

We can now deduce the following result. 

 

Theorem 6.  Consider the graph of 𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞] 
nanotori. Then, the 𝐺𝐴𝑒 of 𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞] nanotorus is 

 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞])

= 24𝑝𝑞 + 4𝑝 (
√6

5
+

2√3

3
+

4√3

7
−

14

4
) 

 

Proof.  Let G be the graph of  𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞] 
nanotori. Since 

 

𝐺𝐴𝑒(𝐺) = ∑
2√𝑑𝐿(𝐺)(𝑒)𝑑𝐿(𝐺)(𝑓)

𝑑𝐿(𝐺)(𝑒)+ 𝑑𝐿(𝐺)(𝑓)𝑒𝑓∈𝐸(𝐿(𝐺)  , 

 

this implies that 

 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞])

= 2𝑝 (
2√2 × 3

5
) + 4𝑝 (

2√2 × 4

6
)

+ 4𝑝 (
2√3 × 4

7
)

+ (24𝑝𝑞 − 14𝑝) (
2√4 × 4

8
) 

After an easy simplification, we obtain 

𝐺𝐴𝑒(𝑇𝐶4𝐶8(𝑆) [𝑝, 𝑞])
= 24𝑝𝑞

+ 4𝑝 (
√6

5
+

2√3

3
+

4√3

7
−

14

4
) 

 
Now the proof is complete.  

 

3. Conclusion 
 

In Theoritical Chemistry, the topological indices and 

molecular structure descriptors are used for modelling 

physic-chemical, toxicologic, biological and other 

properties of chemical compounds. In recent years, some 

researchers are interested to study the topological indices 

of certain nanotubes and nanotori, for example see 

[1,8,12].  In this paper, we have investigated the new 

version of geometric arithmetic index of some families of 

nanotubes and nanotori.  
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